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The identification of the interfacial molecules in fluid-fluid equilibrium is a long-standing problem in the
area of simulation. We here propose an alternative point of view, making use of concepts taken from the field
of computational geometry, where the definition of the “shape” of a set of points is a well-known problem. In
particular, we employ the �-shape construction which, applied to the positions of the molecules, selects a shape
and identifies its boundary points, which we will take to define our interfacial molecules. A single parameter
needs to be fixed �the “�” of the � shape�, and several proposals are examined, all leading to very similar
choices. Results of this methodology are evaluated against previous proposals, and seen to be reasonable.
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I. INTRODUCTION

Interfaces, frontiers between homogeneous phases, are
ubiquitous in nature, playing a fundamental role in the be-
havior of many complex systems. Given their inherently
more difficult analysis compared to bulk homogeneous sys-
tems, there are still many open questions about their struc-
ture, dynamics, and stability. The interest in these structures
has been steadily growing in recent years, not only from
fundamental reasons, but also because of their relevance in a
great variety of problems in physical chemistry, biology, and
material and health sciences. Lately, progress in this area has
benefited from advances in computing power and numerical
simulation at the molecular level. Simulation has placed it-
self in an important pivotal position between experiments
and theory �1�. Still, results from simulations must be care-
fully analyzed, and some features of the resulting configura-
tion can be hard to obtain, or even define. This is the case of
the interfacial region between two fluids at coexistence,
which is clearly obtained in certain simulations �so-called
explicit simulations of interfaces�, but whose precise defini-
tion is elusive.

We present here an approach to the analysis of configura-
tions resulting from a molecular simulation of an interfacial
system. We have divided this introductory section into two
parts; first, we discuss the physical and mathematical ap-
proaches to the interface. We then introduce some concepts
from computational geometry, a branch of computer science
devoted to the study of geometrical problems, such as the
“shape” of a set of points. Our proposal is to use methods
from this field in order to analyze the interfacial configura-
tions obtained by simulation.

A. Theories for the interface

In this paper we will focus on the most studied and, argu-
ably, the most important interface, the liquid-vapor interface.
Theoretical approaches to this problem go back at least to the
end of the 19th century, when the seminal work of Gibbs and

van der Waals was presented. The fundamental tenets of
these theories have cast a great influence on this area for
about one century. In particular, a quasithermodynamic ap-
proach was proposed, in which the interface is described by
a density profile, a function of the normal coordinate which
smoothly goes from the bulk vapor density to the bulk liquid
density �2�. Mathematically, a position-dependent density
profile ��z� is introduced, where z is the coordinate across
the interface. A free-energy functional of the system is intro-
duced, which assigns a number to any profile. These theories
will be called density-functional theories �DFTs� in this work
�even if the usual convention seems to assign this name to
modern ones, excluding van der Waals’s original theory�.
The equilibrium profile would be the one that minimizes this
functional, and the corresponding value of the functional, the
actual value of the free energy. The surface tension of the
interface is given by the excess of this value over the bulk
one �the one with no interface�, divided by the area. The
resulting profile is usually monotonic. On the other hand, in
the last two decades, x-ray analysis of liquid surfaces has
been employed in order to characterize the microscopic
structure, and results for metals such as mercury and gallium
have been interpreted as showing a liquid layering in the first
fluid layers �3–6�. In fact, this has also been found by simu-
lation, for models of simple liquids designed to have low
triple-point temperatures �7,8�.

A complementary vision of the system at a microscopic
level is given by capillary-wave theory �CWT�, in which the
interface is supposed to be given by some intrinsic surface
�IS� at each moment in time �2�. This is a mathematical
surface that can be written in the Monge representation, z
=��x ,y�, and whose precise definition can vary depending on
the author. In any case, CWT concerns itself with the effect
of thermal fluctuations on this IS. One of the foremost pre-
dictions of the theory is the roughness of the source, which is
predicted to �very weakly� diverge with the surface area in
the absence of external stabilizing fields �e.g., the gravita-
tional field of the earth�. The main cause of this divergence
are the Fourier modes with long wavelengths �low wave vec-
tors�, which decay too slowly and thus fail to make the sur-
face roughness convergent. Mathematically the IS is decom-
posed into its Fourier components,*daniel.duque@upm.es; http://debin.etsin.upm.es/~daniel
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��r� = �
q

�qeiq·r,

where r is a two-dimensional position vector, r= �x ,y�. The
mean-square deviation of each of these modes is given by
the theory as

���q�2� =
kBT

�0Aq2 , �1�

where kB is Boltzmann’s constant, T is the temperature, A is
the projected area, and �0 is the bulk surface tension. In the
usual numerical simulations, such as the one presented here,
a stabilizing external field is not present, and surface rough-
ness is rather controlled by the finite size of the simulation
cell, for which periodic boundary conditions are typically
used. In this case the lowest wave vector is q=2� /L �assum-
ing a square prism of transversal area A=L�L�. The density
profile ��z� is then in fact dependent on the area, an effect
which is often neglected but has been reported �9,10�.

It would then be highly desirable to be able to introduce
an intrinsic density profile �̂ independent of the area of the
simulation cell �as long as this is large enough compared
with the correlation length�, which would correspond to the
mathematical surface assumed in CWT. The connection with
the usual, average, density profile ��z� is given by the “con-
volution approximation:” if the intrinsic profile and the po-
sition of the intrinsic surface are taken to be uncorrelated,
then the mean profile is the convolution of the two:

��z� =	 dz��̂�z − z��P�z�� ,

with the Gaussian probability

P�z� =
1


2��
exp�−

z2

2�
� .

The dependence of��z� on the area is clear in the expression
for the width of the Gaussian:

� = �
q

���q�2� =
kBT

�0A
�

2�/L	�q�

qu 1

q2 
kBT

4��0
log�A

a
� , �2�

where qu is a cutoff upper q vector, and a= �2� /qu�2 is the
corresponding molecular-sized area.

Recent works have tackled this problem by defining an IS
that separates the two phases �11,12�. These methods, which
we will call minimum-area �MA� methods employ a Fourier
description of the surface �such as in the original CWT�. The
Fourier components are determined by a requirement that the
surface passes through a set of surface molecules, termed
“pivots,” while having a minimum area. From an initial set
of pivots a surface is thus constructed. The molecule that is
closest to the surface is incorporated as a new pivot, a new
surface is constructed, and the process is iterated until a tar-
get number of pivots is reached. With this procedure, the
interfacial region has been seen to have a much richer struc-
ture, with intrinsic density profiles that are similar to the
radial correlation function of the liquid and show clear lay-
ering even at temperatures close to the critical point. The

new definition, besides shedding a new light on the micro-
scopic structure, allows the study of dynamical features, such
as diffusion, which is relevant, e.g., for surface reaction dy-
namics �13�.

B. Computational geometry

The analysis of disordered media has grown in impor-
tance lately, both within physics and in many other areas. We
will be using one of the most well-known techniques,
Voronoi tessellations and Delaunay triangulations, together
with the lesser-known � shapes �14–16�. Given N points in
three-dimensional space, the Voronoi polyhedron associated
with each point is the region in space that is closer to the
point than to any other point. It is also the smallest polyhe-
dron formed by the bisecting planes of the lines joining the
point with all the others. This concept and procedure are well
known in solid-state physics, where the object is called the
Wigner-Seitz cell, the primitive cell of a crystal structure, but
the Voronoi cells can be defined for disordered media.

From the Voronoi diagram, or tessellation, which is the set
of all polyhedra, one may obtain the Delaunay triangulation,
by joining the points that share a common facet. �One may
call this a tetrahedralization in three dimensions, but triangu-
lation is the preferred name. Indeed, the cells of the space
partition are tetrahedra, but their facets are triangles.� This
triangulation provides a precise definition of “neighbor:”
points directly connected through the triangulation are first
neighbors, point needing two connections are second neigh-
bors, and so on. Even if this description of Delaunay trian-
gulation builds from the Voronoi diagram, it is actually more
convenient computationally to do the opposite, and directly
compute the triangulation. Furthermore, the Delaunay trian-
gulation itself satisfies a number of interesting mathematical
properties, the chief one being that it is unique for “almost”
any set of points, and that the tetrahedra in it satisfy the
empty-sphere condition. That is, for any tetrahedron, defined
by four points which are mutually neighbors in the triangu-
lation, the sphere that passes through them all contains no
other point in its interior. This criterion is, in fact, a key part
in computing these triangulations. Previous work in this area
that has made use of Voronoi diagrams includes examination
of glassy and disordered systems �17,18�, neighbor statistics
�19�, and configurational entropy �20�. There are some works
devoted to the study of the liquid-vapor interface by Voronoi
tessellations �21,22�, but these focus on bulk quantities, such
as densities, not on structure.

Another construction, which is the main feature of this
work, is the � shape �14–16�. This shape has been histori-
cally introduced precisely in order to define the shape of a
given set of points, and it also provides a definition of the
“border” points of the shape. These concepts have been ap-
plied to three-dimensional scanning data, and also to bio-
chemistry �23�, and seem ideally suited to our particular
problem of finding the “outside” of a liquid phase �at least,
when the gas is rarefied enough�. For a given set of N points,
there exist many � shapes, which may be obtained by the
value of the parameter �. Let us define a distance R that fixes
the value of �; depending on the author the relation between
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the two varies. We will take the choice of the Computational
Geometry Algorithms Library �CGAL� project �24�: �=R2,
but for others �=1 /R, and our shapes correspond to negative
values of �.

An intuitive definition of the procedure is as follows �15�.
One may think of the whole of space as filled out with ice
cream, with N chips in it. A spherical “scoop” of radius R
carves out balls of ice cream, without removing the chips.
�Notice we may also carve in between the points, which
breaks the analogy with a real scooping process, where the
scoop must arrive “from the outside.”� The result of the pro-
cess will be a region of space which may have a complicated
shape, which is bounded by caps, arcs, and points. If we
straighten all caps to triangles and all arcs to line segments,
we end up with an � shape. This object has a well-defined
border: the set of bounding points—these are the points that
have been “reached” by the scoop but are still part of the �
shape �i.e., the spherical scoop has been able to remove some
of the ice cream around them, but not all of it�. This set of
points defines the �-shape border. Notice that the procedure
also introduces a definition of neighborhood: three points are
neighbors if a scoop has reached the three of them. �This is a
description of three-dimensional � shape. Its two-
dimensional analog also exists and is easier to visualize, but
has a lesser applicability. Also, note that some authors
choose to define an � shape by what we here call its border,
which may lead to confusion.� In Fig. 1 we show a schematic
diagram of the construction; for a set of points we show how
the choice of R affects the final � shape. For the sake of
simplicity, a two-dimensional construction is employed.

Two limits will perhaps clarify the procedure. If � is very
small, all of the points will be reached. The resulting shape
is, therefore, all of the N points—but none of them will be-
long to the border. The other limit is perhaps more interest-
ing: for values of � that are very large, the scoop takes half
spaces out, and can only reach the points that protrude from
the surface. In this limit, the resulting � shape has as its

border the very well-known convex hull of a set of points.
We have made use of the CGAL �24�, which provides highly
efficient codes for these kind of structures. The � shape is
evaluated in this library at little additional computational
cost once a Delaunay triangulation is computed: the empty-
sphere condition permits association of a given radius to
each tetrahedron, below which the scoop will be able to “get
in.” It is therefore a matter of bookkeeping to find the acces-
sible points given some � value. More technically, the �
shape is built in the �default� regularized mode, which elimi-
nates isolated faces, and the border points are identified as
the “regular” points �25�.

This procedure is related to a recent proposal by Pártay et
al. �26�, in which they employed spheres approaching the
surface in the normal direction, from the vapor side. This
method and the one examined here are likely to provide
similar results at low temperatures. At higher ones, on the
other hand, their method will be hampered by molecules that
are either in the vapor phase or loosely attached to the sur-
face. Moreover, it will miss overhangs, whose role may be
important at temperatures close to the critical point. �Note
that this also applies to the MA methods, since they assume
a surface defined mathematically by a single function z
=��x ,y�, which cannot present overhangs.� In this sense, the
current method can be considered more robust and reliable.
Moreover, it can be computationally more efficient than ei-
ther the methods of Ref. �26� or MA methods �we will dis-
cuss efficiency in Sec. III�. In addition, this method is not
restricted to flat interfaces and can readily be applied to other
interfaces, such as curved ones. This may be very useful in
studies of nucleation �or cavitation�, where knowledge of the
interfacial properties of droplets �or bubbles� may be
desirable—this method may also be employed for micelles
and other supramolecular aggregates. In fact, for most results
we do not need to distinguish between an “upper” and a
“lower” interface, since the method selects both of them au-
tomatically. It is also easy to label each of the particles in the
system as being part of the IS, next to it, second next to it,
etc., since the Delaunay tessellation provides a good defini-
tion of neighborhood �as explored in the context of correla-
tion functions in Ref. �19��.

Another relevant reference is the work by Chowdhary and
Ladanyi �27�. In their work, the selection of surface mol-
ecules was alleviated because they considered binary inter-
faces between water and hydrocarbons. Since the two com-
ponents are nearly immiscible, a simple definition of
proximity to the opposing species can be employed to iden-
tify pivots. They went forward and constructed an IS, a step
not taken by Pártay et al. �26�. In a spirit similar to this
paper, concepts of computational geometry are employed:
the pivots are projected onto the plane of the interface, and a
Voronoi tessellation is constructed �this procedure is closely
related to the one termed “Delaunay terrain” in the CGAL

documentation �24�.� This allows an association of each non-
surface molecule with a surface one, from which intrinsic
profiles may be computed. In line with the MA results, struc-
tured intrinsic profiles are found for water, even when aver-
age profiles are monotonous �for hydrocarbons both are
structured; the intrinsic ones more so.�

The method as implemented in CGAL is suitable only for

FIG. 1. �Color online� Schematic diagram of the �-shape con-
struction. For the sake of simplicity, a two-dimensional construction
is shown. Left: a set of particles �red circles� is endowed with an �
shape �whose border is plotted with a solid line� corresponding to
scoops of radius R; dashed circles represent scoops with maximum
penetration �touching two particles�. Right: for the same particles, a
smaller scoop radius produces a different � shape.
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“open” boundary conditions. For example, an additional
“point at infinity” is introduced when computing triangula-
tions. Our system features periodic boundary conditions,
which are not yet implemented in CGAL �a project to include
them is underway �28��. We therefore choose the clumsy, but
effective, procedure of replicating slabs of our cell, then ne-
glecting the points which are outside the original cell. We
have made sure these slabs are wide enough, 4
, for the
boundary conditions to be well represented.

II. METHODOLOGY

We simulate a fluid with 2592 particles interacting
through a Lennard-Jones �LJ� potential:

u�r� = ���


r
�12

− �


r
�6

− � 


rc
�12

+ � 


rc
�6� . �3�

Interactions are truncated at a cutoff radius of rc=3.02
. Par-
ticles are confined in a rectangular cell of dimensions Lx
=Ly =L=10.46
 and Lz=90
. Periodic boundary conditions
are applied in all directions. Standard molecular-dynamics
simulations are carried out, with a time step dt=4.56
�10−3

m /� �in reduced units�, using the software package
DL_POLY �29�. After an equilibration period of 106 steps, par-
ticles form a liquid slab in the x-y plane, surrounded by
vapor. The temperature is set at kBT=0.678� by a Nose-
Hoover thermostat. This has been found to be the triple-point
temperature for this truncated LJ potential, and hence the
lowest temperature at which the liquid is thermodynamically
stable. A production run of 50 000 steps is carried out, in the
microcanonical ensemble, in order to avoid possible artifacts
of the thermostat on the dynamics �which will be important
for one of the methods explained below�. Interfacial dynam-
ics is slow enough to let us analyze 1 configuration out of 10,
so we have to sample 5000 configurations.

This choice of parameters �specially, number of particles
and cutoff radius� leads to a very fast computation that may
be carried out even in a standard modern laptop computer.
The reason for carrying out this simple simulation is that we
will compare our results with MA. The latter technique is
quite heavy computationally, so that its configurational
analysis ends up being more time consuming than the simu-
lation itself. For this number of particles, the MA analysis
takes a CPU time about ten times longer than the simulation.
The current procedure takes a time comparable to the simu-
lation, depending on the information requested �about the
same for the number of pivots, twice as much to build the
intrinsic profile, ten times as much for the Fourier analysis
described below.� Moreover, the MA procedure grows with
the number of particles as N2 �if the surface area is scaled
suitably, so that the area grows as a power 2/3 of the number
of particles�, whereas the current procedure grows as bad
only in the worst case: typically, it grows only as N log�N�
�the Fourier analysis scales as N2/3 log�N��. We have carried
out additional runs in order to get error bar estimations for
some calculations, as will be indicated.

In order to define the border between the liquid and vapor
phases, � shapes are employed. The particles that define this
border, which will be the outmost liquid layer, will be called

“pivots,” keeping the standard nomenclature. The idea is to
obtain these pivots as the points belonging to an � shape.
Notice that the resulting shape is not a smooth surface, as in
previous approaches, but a triangulated one.

A first issue arises from the fact that there are isolated
particles that belong to the gas that will be included as part
of this shape for any reasonable value of �. This is easily
taken care of by choosing the points that have surface neigh-
bors in the sense given above �having a sphere of radius R
touching all three�, and marking the rest as isolated. In the
CGAL implementation, this is taken care of by choosing the
regular points in the regularized mode, as commented above.
This procedure, indeed, is similar to the percolation analysis
that is employed as a first step in MA approaches. In Fig. 2
we show a snapshot of our configuration and the resulting �
shape, for a typical choice of � explained below.

III. RESULTS

Of course, the main task is to determine the optimal value
of the scoop radius R, or equivalently the right � shape
�since �=R2.�

At variance with many previous applications, the system
under consideration has some well-defined length scales. For
dense phases, such as the liquid, the interparticle spacing is
always close to the distance at which the potential has its
minimum �21/6
 for the LJ fluid�. Some of the particles may
be slightly farther, but they can never be much closer, since
at some distance hard-core repulsion sets in �around 
 for the
LJ fluid�. This means that a choice of R	
 will result in the
selection of all of the particles as belonging to the � shape, a
nonsensical result from a physical point of view. Values of R
too high, on the other hand, result in few pivots being se-
lected, and a nearly flat shape �with our boundary conditions,
one outmost molecule at each interface will be selected as a
pivot, with horizontal interfaces.� In practice, we will need to

FIG. 2. �Color online� Snapshot of one of our configurations.
Molecules are pictured as white balls, translucent unless they be-
long to the intrinsic surface, in which case they are solid. The �
shape border, for �=R2, with R=1.2, is the red triangulation, with
edges in blue.
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consider a range 
	R	2
, or 
2	�	4
2.
There are several ways to determine this value, which

should yield the same result �within error intervals�: �a� ex-
amination of the profiles, �b� pivot dynamics, and �c� com-
parison against previous, reliable, results. These three paths
are described in Secs. III A–III C.

A. Structure

The first route is through careful examination of details of
the profiles. Several profiles can be obtained: the average
profile ��z�, the pivot profile �s�z�, and the intrinsic profile
�i�z�. The first is of course independent of the procedure used
to obtain the IS. The overall shape and decay of the other
two are features that have been used in order to determine
the best value of the parameters. As discussed in Refs.
�30,31�, this is quite painstaking and fine-tuning is difficult.
For example, in Fig. 3 we plot results for R=1.20
 and R
=1.30
 which, as we will see, are close to optimal; it is
clearly difficult to judge which profile is “best.” We therefore
focus on a specific detail of the profiles: the difference be-
tween the height of the first peak and the next trough �the
one between the first and second peaks�. This distance will
be a measure of the structure of the intrinsic profile.

In principle, a more structured profile should be prefer-
able. The argument behind this claim is partly circular: given
that we assume the existence of some IS which provides
some intrinsic density profile �much rougher than the aver-
age one�, the best criterion is the one that results in the
rougher profiles �always, of course, within some logical
physical limits� �32�. In fact, this criterion enables us to com-
pare different methods, as we will see in Sec. III C. Of
course, this point of view should not be pushed too far, and
profiles that oscillate unphysically, or present other unlikely

features, should be discarded. Ultimately, a comparison with
results obtained by other methods �such as experiments�
would favor one method or another, but for the time being
this comparison is not possible.

In Fig. 3 we draw vertical segments that represents the
measure of structure. for two particular choices; the collected
values are plotted in Fig. 4. Apart from some noise, an opti-
mal value of R of about 1.2
 is clearly identified—this could
be anticipated, as it is close to the mean interparticle distance
in the bulk liquid, which in turn is similar to the value at
which the LJ potential has its minimum.

In Fig. 5 we show the calculated surface density ns, an
important surface characteristic which is simply defined by
the number of pivots per unit projected area �i.e., the nominal
area, not the area of the IS�. The inset shows a blowup of the
area most relevant for this study. For R=1.2
 we can read
off the value ns= �0.77�0.2�
−2, to be compared with pre-
vious estimate �31� of 0.80
−2.
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z/σ
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1.5

ρ i(z
)

σ3

FIG. 3. �Color online� Density profiles as functions of the coor-
dinate across the interface. Solid black line: intrinsic density profile
�i�z� obtained by the current method, for R=1.20
; dashed red line:
�i�z� obtained by the current method, for R=1.30
; blue dotted line:
MA �i�z� taken from Ref. �30�. The vertical arrow marks the differ-
ence that serves as a measure of order. Green long-dashed line:
pivot profile �s�z� obtained by the current method, for R=1.30
;
brown dot-dashed line: MA �s�z� taken from Ref. �13�. The two
later curves are normalized to unity.
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FIG. 4. �Color online� Solid black line: difference between
heights of the first peak and next trough of the intrinsic profile �see
arrow in Fig. 3 for a particular case� versus scoop radius R. Dotted
red line: pivot turnover rate �arbitrary units� versus scoop radius R.
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FIG. 5. �Color online� Surface density �pivots per unit area�
versus scoop radius R. The error bars correspond to the variance of
the density due to different samples. Inset: blowup of relevant re-
gion, shown as a red dotted box in the main graph.
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B. Dynamics

As shown recently �31�, dynamics can provide a reliable,
independent way of obtaining the optimal parameters for the
IS, apart from the obvious interest in dynamical features of
the interface �13�. A key quantity in this regard is the turn-
over rate: the number of molecules per unit area and per unit
time that enter the IS �i.e., those that become pivots�. This
number also equals the number of molecules that leave the
IS, on average �or, exactly if the number is fixed, as in most
recent MA approaches �30,33,34��. The pivot residence time
is physically influenced by the fluid dynamics at the molecu-
lar level, but it is also tied to the specific choice of IS. If the
number of pivots is too high, there will be a high number of
them that enter and leave the IS at each time step: many of
these pivots should not be included in a physical IS, and this
high turnover is spurious. If, on the other hand, the number
of pivots is too low, the IS will change its shape a great deal,
jumping from a set of pivots to another one, thus causing a
high turnover. The best parameter is, in principle, the one for
which a minimum in turnover rate is found. This argument
applies most directly to procedures in which the number of
pivots is fixed, but it may be applied to other parameters,
such as R, that indirectly affect this number �with a clear
dependency, as shown in Fig. 5�. In Fig. 4 we plot this turn-
over rate, which identifies a value of R=1.23
—this is in
rather good agreement with the previous value of 1.2
. The
corresponding surface density is ns= �0.74�0.2�
−2.

A related criterion, not strictly dynamical in nature, is to
check the variance implied in the error bars of Fig. 5. This
quantity shows a minimum at R=1.25
, in very good agree-
ment with the previous value �there is a deeper minimum at
R0.75
, but this range is unphysical�.

C. Comparison to known results

We may compare the resulting intrinsic density profiles
with the ones from the MA method. In Fig. 3 we also show
�bell-shaped curves� the density profile of surface molecules
�pivots�, �s�z�, compared with a previous MA profile. The
parameter R is set to 1.3
, which, as has been explained, is
close to optimal. Our current results show a slight decrease
of central pivots and an increase of peripheral ones. This
means the � shape is including molecules slightly toward the
two bulk phases, which are not part of the MA list, and
neglecting some interfacial ones. This does not seem desir-
able, but the two curves are seen to be quite close in shape.

On the other hand, a comparison of our intrinsic density
profile �i�z�, already discussed, with the MA one �both in-
cluded in Fig. 3, with solid and dotted lines� clearly shows
that the current method, despite its elegance, still performs
worse than the MA one. Keeping the criterion employed in
Sec. III A, a stronger structure signals a better method, and
our intrinsic profiles, while showing distinct layering, are
smoother than the MA ones. We will discuss possible im-
provements in Sec. IV, but for now let us take this as an
indication that MA results may be taken as close to the “op-
timal” ones.

We may now use this idea in order to rapidly establish the
optimal values of R, by comparing against the MA results. In

Fig. 6 we plot �solid line� the fraction of MA pivots that are
part of our pivots. The agreement is fairly low for high val-
ues of R, since very few pivots are selected in this case
�recall that only the most exposed molecules are selected for
very high values of R�. The agreement then increases, and
goes to almost 1 at values around 
. This means all MA
pivots are included in our set, but this is hardly surprising,
since around this range most molecules are selected as bor-
ders of the � shape, including of course most MA pivots �see
the high peak in Fig. 5�. The information can therefore be
completed by considering the fraction of our pivots that are
contained in the MA list. This curve is also plotted in Fig. 6
with a dashed line. The behavior is qualitatively similar, but
this time the maximum is much more rounded, and occurs at
higher values, around 1.5
. Since the maxima do not coin-
cide, we may take the value at the intersection of the two
curves as the best compromise. At this value, about 88% of
the MA pivots are included in our list, and 88% of our pivots
are included in the MA list. This value turns out to be R
=1.16
, again in good agreement with previous estimates.
Alternatively, this crossing is the point for which both meth-
ods coincide in the value of the surface density, ns
=0.80
−2. �If a set A contains a fraction of elements common
with another set B, and B contains the same fraction of ele-
ments common with A, both sets must have the same size.�
An alternative procedure would therefore be to select the
value of R for which a previously known surface density is
recovered.

Given the strong anisotropy of the interface in the direc-
tion across it, we have also explored the possibility that one
may obtain better results with the use of ellipsoidal scoops,
instead of spherical ones. �The same numerical libraries may
be used, since what we effectively do is to compress the
system in the z direction instead, while keeping the scoops
spherical.� The scoops would be defined by

�x/R�2 + �y/R�2 + �z/DR�2 = 1,

with two parameters, R as before and D measuring the an-
isotropy. This new parameter, D, is explored in Fig. 7. For
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FIG. 6. �Color online� Fraction of pivots versus scoop radius R.
Solid black line: fraction of MA pivots that are part of our pivots.
Dashed blue line: fraction of our pivots that are part of MA pivots.
The dotted green vertical line provides the intersection of the
curves, at R=1.16
.
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each value of D the optimum value of R is found, and the
curves therefore imply different values of the latter, which is
1.16 at D=1. It is apparent that the best value turns out to be
very close to D=1. This is also the case for the methods
above �result not shown�: the difference in height is maximal
for this value; the minimum of the turnover rate is shallower
for other values of D, and does not coincide with the mini-
mum of the variance. Hence, the idea of using ellipsoidal
scoops can be rejected, at least for this simple liquid.

Since our triangulated mesh is a perfectly defined math-
ematical entity, a full Fourier transform of the surface can be
carried out, at an arbitrary level of detail. This is at variance
with the MA procedure, in which a higher cutoff wave vector
qu must be introduced in order that the method be math-
ematically tractable. While there is a physical reason for this
wave vector being close to qu=2� /
 �as usually done in
CWT; see Eq. �2��, finding its precise value has been deli-
cate.

In Fig. 8 we compare results from the Fourier analysis of
our IS surface with recent MA results. In particular, we com-
pute the very important surface-tension spectrum; CWT es-
tablishes the mean-square fluctuations of Fourier mode given
in Eq. �1� above. This expression is seen to be only valid at
low q values; at higher values, the q dependence is taken
care of by defining a q-dependent surface tension:

��q� �
kBT

Aq2���q�2�
.

The main argument behind CWT hinges on this function
increasing with q; otherwise the surface would be unstable
against high-q perturbations. In order to refine our precision,
we have carried out four additional runs, and used results
from the two interfaces present in the system, in order to
obtain eight values for each value of q. We have used their
mean value as our measured quantity, and their standard de-
viation as its error bar. The error bars are seen to be increas-
ingly smaller at lower values of the wave vector, with statis-
tical errors increasing at higher values

In the same graph we include previous MA results for this
system �35�, and the bulk surface tension. For the latter

quantity, a new simulation has been carried out at this par-
ticular temperature and potential cutoff; we indicate the
range of the surface tension, that is, a band centered in the
mean value and with a width given by the error, calculated as
in Ref. �36�. Our curve is qualitatively similar to the MA
one: both tend to the bulk value in the limit q→0 and then
increase, and both increase further for high values of the
wave vector, in accordance with the CWT thesis. Quantita-
tively, they differ in the values of ��q�, with the MA curve
starting out with a higher slope, but then growing slower
than our curve at higher values of q.

At this point, we must mention that our results share a
feature with those from MA: the absence of an intermediate
minimum between the limits of very small and very large
wave vectors. To be more precise, our error bars would in
principle allow for a minimum around q=1 /
, as shown in
the inset of Fig. 8, where a possible deepest-minimum situ-
ation is depicted. However, the inset also shows that this
minimum is not likely to be present at all, given the range of
the values for the bulk surface tension.

The presence of a minimum would imply the enhanced
amplitude of capillary waves with wave vectors around it.
This possibility was predicted theoretically by Mecke and
Dietrich �37�, improving previous efforts �38�. The theory
was later expanded �39–42� and received support from simu-
lations �43�. Remarkably, experimental work has also con-
firmed this prediction �44–48�. However, other experimental
teams have pointed out technical difficulties in the interpre-
tation of the experimental data �49,50�. Likewise, the main
theoretical framework has been recently challenged �51�.
There are indications �see recent Ref. �52�� that this disagree-
ment stems from whether the IS is defined from the molecu-
lar positions �as in this work�, or from molecular distribu-
tions �such as a set of Gibbs dividing surfaces�.
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FIG. 7. Fraction of MA pivots that are part of our pivots versus
anisotropy parameter D.
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FIG. 8. �Color online� Wave-number-dependent surface tension
��q� in reduced units. Black bars: current results, with error bars;
solid red line: MA results �35� for ns=0.8
−2, qu=2� /
; dashed
blue line: range of values for the bulk surface tension, obtained by
the method of �36�. The inset shows a blowup of the low-q region,
shown as a red dotted box in the main graph. In it, a possible
deepest-minimum situation is plotted with a green dot-dashed line.
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IV. CONCLUSIONS

We have presented an application of the �-shape concept,
taken from the field of computational geometry, to the iden-
tification of the intrinsic surface of a liquid-vapor interface.
Compared with the minimum-area method, the method may
have a lower performance, as indicated by the less structured
intrinsic density profiles. However, the method is elegant and
computationally very simple, both from a computational
point of view and, more importantly, from a mathematical
one. The resulting IS is a triangulated mesh, which is a per-
fectly defined mathematical entity. As a result, a full Fourier
transform of the surface can be carried out, at an arbitrary
level of detail. Our results for the surface-tension spectrum
are qualitatively similar to the ones from MA, even in quan-
titatively different. In particular, no sizable minimum in the
surface tension is observed.

We therefore feel that the current method shows a number
of interesting features. Even if still inferior to the MA
method, further developments could refine it and make it
comparable. It is interesting, in this regard, to incorporate
some of the basic ideas of MA in the procedure: either
minimum-area requirements, or incremental adding of pivots
to an existing surface.
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